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Abstract

We initiate the study of a family of models of military combat which
include classical linear Lanchestrian models as a special case. These
‘models introduce the additional concept of one or several columns pro-
viding supplies to one of the forces. It is assumed that the other force
is defending an already supplied position or is prepared only for a short

campaign. The models are designed so as to have solutions that are pri-

marily qualitative in cha{:s;er. They have the form of a linear system
i ‘-'-f

of differential equations %{ = Au + F(t) where u 1is a vector with
>or =

m X 3 components, A 1is an mXm constant matrix and F 1is a given
ok &

time dependent vector with m components. The differential equati ons
are to be solved subject to certasin stopping rules. When we say that

the solutions are qualitative in character, we mean that the mathematical
form of the solution does not depend upon the magnitudes of the elements
of the matrix A but only upon the signs of these elements. We intro-
duce the concepts of upper and lower solutions which serve as bounds

for all positive solutions of the problem. We obtain detailed results

on the eigenvalues and eigenvectors of A and explicit representations

of the upper and lower solutions.
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1. Formulation of the Models

In this paper we introduce a class of Lanchestrian models of com-
bat including logistic considerations and initiate the detailed analytic

study of them. It turns out that the analysis of such models falls

naturally into two parts, an analytic part in which we derive explicit
solutions and examine their fundamental properties and a geometric part
which provides valuable insights into the nature and behavior of solu-
tion trajectories. In order to keep this paper from becoming too lengthy
we restrict ourselves herein to the analytic portion of the analysis
reserving the geometric analysis for a subsequent paper.

Our models consist of two combat forces, an x - force either

occupying an already supplied position or carrying enough supplies for
a short (say a 30 day) campaign, and a y - force supplied by several
columns at the levels sl,...,sp . We assume that the equations gover-

ning the combat have the form

x = -agx - bly - bzsl . eee o bp+lsp + f(t)
y = -clx - aly + g(t) (1) |8
8\ = -ck+1x 1% + rk(t) oL E R & . :

In equations (1) the dots denote derivatives with respect to time. The

-

coefficients a, and a represent losses in the x and y forces ﬂf
not due to direct fire. They may be expanded to include such effects as ?
losses due to desertion, sickness, and accidental injury as well as to

interdiction by enemy fire power not itself subject to attrition. The

coefficents bl and c1

y representing direct fire of the combat forces upon each other. The sub-

are the usual attrition-rate coefficents

n L el e g
- e T
‘b.jgihb\
T LT
= -
=

,{ ¥ system arising when bt ik, R 0, 2sksp+1, has been studied by




F o Ry g Sl 2 5 e

Bach, Dolansky, and Stubbs [1]
Our analysis includes, of course, camplete results for this subsystem.

The coefficients ¢ 22 3sp+1, represent the portion

j ’
: of the direct fire of the x- force used to interdict the supplies of the

y - force. We assume that supplying the y - force at an adequate level

enhances his ability to inflict casualties upon the x - force. The coef-

ficients b_,---,b capture this effect. The coefficients a5,

a ptl

a represent losses to the supply columns not due to direct fire by

ptl

the x - force. They may be expanded to represent the effects of equip-

ment breakdown, adverse weather conditions or terrain, as well as losses

to fire power not itself subject to attrition. Finally the nonhomogene-

ous terms f(t), g(t), rk(t), 1 <k < p , represent reinforcements.

The system (1) 1is to be valid only for nonnegative func-
tions x, y, 8’ 1 <k < p, which are subject to certain stopping rules
furnishing conditions under which one force or the other must disengage

| from combat. We consider two types of stopping rules.

{
% Type 1 stopping rules: There exist constants B >0 , y 2 0 , aj >0

! 1< j<p, such that the y- force must disengage if either

. ysg (2)

y > ajsj R 6 (3)

and the x - force must disengage if

S Bl ik
b

%f XSy . %)

.
&

.}
! ,;,'ﬁ,"i {
& |
b e Type 2 stopping rules: There exists o > 0 such that the 1y - force
I

-

Sl

must disengage if either (2) holds or

i
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2
y>a(sl+---+sp & (5)

and the x - force must disengage if (4) holds.

The condition (2) with B > 0 1is included to avoid the
paradoxical situation which would arise if y = 0 and at least one
'j > 0 . Then we would have the x - force suffering losses inflicted
by supplies alone.

The conditions (3) insure that the 1y - force 1is supplied
at an adequate level. They may be regarded as the supply requirements
when the several supply columns are furnishing different mixes of sup-
plies. The condition (5) should be applied to the case where each
supply column is furnishing approximately the same mix of items. Finally
the condition (4) 1is an obvious stopping rule.

In addition to the stopping rules we have the initial con-
ditions x = Xgr ¥ = Yo lj = 'jO at time t =0 where all initial

values are positive and

0<B < Yo

< a.s Is j=sp, (6)

o " %550 °

0=y <x

if stopping rules of type 1 apply, and

2 112

0<B < Yo < a(s§0+...-+sp0)

(7)

0y < X

if stopping rules of type 2 apply.
In most of our work we shall be concentrating on results

that are primarily qualitative in nature. This is important because

data regarding the magnitudes of the coefficients in the system (1) is




either nonexistent or varies over such a large range of values that one
must conclude either that it is unreliable or should be interpreted as
stochastic. Thus we shall be interested in results which depend only
upon the fact that the coefficents are either positive or zero, but
which do not depend upon their magnitudes. Unfortunately, not all ques-
tions one might wish to ask about solutions are independent of the magni-
tudes of the coefficients. Nevertheless a remarkable number of properties
of solutions are qualitative in character.

From the system (1) we may derive a second closely related
system in the following way. Since we are concerned only with positive
solutions of (1) , let us introduce the numbers

= max a, ,
1sksp+l I

a= min a_ .
1sksp+l J

x < -aox - blyo - bz’l - eee = bp+lsp LEECE)

y S -cqx - ay + g(t) ,

BT I R LR KD,
X 2 -agx - blyO - bz'l wrestee p+1%

y 2 -egx - Ay + g(t) ,

° 2 . -—
S Crs1™ - 88y + rk(t) y 1Sk=p.,

It follows that positive solutions of the system

s B R R T T TS T
he ?‘ Lo W T b8 g T “-\i'lg- 7 e R
Al AR T, Ay T e T 2 SR Sy
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X = -aox - blyO L bzsl e bp+18p + f(t)

§®~cx - ay + glt) (8)
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furnish upper bounds for positive solutions of the system (1) when
a = a and lower bounds for positive solutions of the system (1) when
a =a ., It is therefore of obvious importance to carefully study pro-
perties of positive solutions of the system (8)

The system (1) (and, of course, also the system (8)) has con-
stant coefficients. It follows, therefore, that the analytic forms of : g
solutions are completely determined by the eigenvalues and eigenvectors
of the coefficient matrix A . 1In section 2 we show how to determine

the multiplicities and the signs of the eigenvalues of this matrix. Our

results are complete and detailed. We also completely detail the struc-
ture and properties of the corresponding eigenvectors. Generally speaking
all of these results are independent of the magnitudes of the elements

of the matrix A . The behavior of the largest eigenvalue of A , which
is always simple, is an exception because it can be positive, negative,

or zero depending upon the relative magnitudes of the elements of A .
Thus we can obtain both stable and unstable solutions of the system (1)
in various cases. The system (8) also exhibits the same possibilities.

Section 3 is short and summarizes how solutions are explicitly

constructed using the eigenvalues and eigenvectors of A . We do this

both for the homogeneous and for the nonhomogeneous case. This section
really consists of the application of well-known results to the present
problem.

In section 4 we explicitly construct the solution of the system

(8) . For this special case the eigenvalues can be calculated as
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functions of the elements of A . This enables us to construct the
fundamental matrix of A and its inverse. Rather simple analytic
expressions are thus derived both for the solution of the homogeneous
system and for the nonhomogeneous system.

In this paper we do not attempt to examine in detail the role
played by the stopping rules. In a subsequent paper we will show how
the stopping rules can be interpreted geometrically as boundaries of

surfaces which contain the solution trajectories.

The Matrix of the System

Let us set z = (x,y,sl,---,sp)T and define the matrix

A= -a, -b1 -b2 coe -bp+1 . (9)
S
-c, 0 e 0
-cp_'_1 0 0 —ap+1

Then the system (1) can be written in the form

z = Az + F(t) (la)
where

F(t) = (f(t)’z(t)vrl(t):-o-:rp(t)) .

Obviously the evolution of the solution of system (1) or (la) is
determined by the properties of the (p+2) X (p+2) matrix A and
the initial conditions. 1In this section we investigate the properties

of A .

The matrix A belongs to the class J2 (see [2]) which is a




qualitatively determined class of matrices and, since symmetrically placed
elements have the same sign, the matrix can be symmetrized (see [3]). In

fact, for the diagonal matrix

§
s L T T ) ™ = T I e ey

T

172 1/2 1/2
= / / cee
D+ diag[ 11 (bl cl) 3 (bz cz) » p(bp+1 /cp . 1) ] 2

we have S(A) = D_;_IAD+ a matrix of the form '
g 1/2 172 1/2 |
S(A) = |-a, =(byey) -(b,e, -(bp+1cp+1) :
1/2
-(blcl) -a, 0 0
1/2
f -(b2c2 0 -az s 0
172 :
'(bp+lcp+l) 0 (] -ap+l ;

Thus the matrix A 1s similar to a symmetric matrix, hence it has real

eigenvalues and eigenvectors and is similar to a diagonal matrix.

We shall investigate more closely the eigenvalues of A . To

this end note that

p+1 p+1 p+1
det(A\1-8) = [] (A\+a) - ) bie, T G+ap) . (10)

i3

i=0 j=1
We now parallel the development presented in the paper [4] (see also [5]).

Suppose there are k distinct values among the numbers ag

1<is<p+ 1, which we take to be a in increasing order and

1’.'."k
suppose further that these occur with multiplicities m,°tc,m Tes-

pectively where obviously we must have my Lt m =P + 1. (Note

that k = p+ 1 1{s a possible value in which case there are no repeti-

{0 1<{<p+1.) From the righthand side
k m,-1

of (10) we can factor out :rqfx-tii) . , hence -it is an f.

tions among the numbers a




eigenvalue of A of multiplicity m, - 1 . Now divide det()\I-A) by

i
k m,
Tr(k*'?i) to obtain
i=1
d I1-A .
_det(\I-4) 2 i ST
K SR Z_IHEJ a) Ty - i
TTa+a) : |
i=1 i3
where &
o1y
TARR TR .
=1 j

and d is the sum of the m, values of bic associated with Ej :

3 j i

Clearly, the eigenvalues of A not found among the a 1sjsk,

j ’
are going to satisfy

d()\) = -a (11)

0 -
Let us plot d()\) against ) . Clearly, d()\) is asymptotic to

each of the vertical lines ) =@ 1< js<k . Moreover, we have

j)
k d
a’o) =1+ Z———i— >0

=10 +Ej)2 :

hence d 1is an increasing function of )\ wherever it is defined.

: > 0 and d(0) 1is not defined if El =0 ,

d*>o as )\ =+ and d- -» as )\ = - . It follows that the graph

Also d(0) < 0 if all a

is as shown below.
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Figure 1

(In the case where 31 = 0 the vertical axis is a vertical asymptote.)
We see that the k + 1 roots of (1l1) , denoted by Wys e ool satisfy

the inequalities

>ty > =& (12)

p1>-&1>p,2>-3 > I T % k>“k+1.

2 k-1

It follows that the p + 2 eigenvalues of A are divided into two
groups as follows:
) Gt There are p + 1 - k eigenvalues consisting of m - 1 values
equal to -Zi o B G )
II. There are k + 1 eigenvalues “j , 1< J<k+ 1, which are
simple and satisfy (12) .
The first group can be empty (the case k = p + 1 ) but there are

always at least two elements in the second group. In the case k =1

where al By ap+1 al , the sequence of eigenvalues has the form

o %783 S

with a; occurring p times.
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It is important to observe that the largest eigenvalue Wy can

be positive, negative, or zero (the case Ky > 0 1is illustrated in
figure 1). Obviously, 1if a, = 0 or ;1 = 0 then Ky >0, but if

;1 < 0 and 80 > 0 all cases can occur. Moreover, we can formulate
the conditions for A\ = 0 to satisfy (1l1) . Imn fact, d(0) =

is an eigenvalue if

%9

and Wy >0 if

(13c)

In the case where ¥y < 0 the matrix A 1is a stable matrix, otherwise
A 1s not stable. We shall see subsequently that the behavior of solutions
of the system (1) are not qualitatively different in the stable case
from their behavior in the nonstable case.

It is instructive to examine two specific examples of the class

of matrices A .

Example 1. Consider the case p =1 so that (a0:>0)

A=

We have det(\I-A) = (A-+ao)(x-+|1)(x-+a2) - blcl(x-+a2) - bzcz(k-+al) N

Thus two basic cases can arise. First, if a, = a, = ;1 , we have




B

; 11
3 v 3 By +B,¢, ;
o | det(\I -A) = (A +a1) [A +a0 - _—Tf—i—l_ ] . It follows that -a, is a

simple eigenvalue of A whose three eigenvalues satisfy

E 1 < -a, < .
. i o ST

For a, = o, Ky > 0 . Otherwise A 1is a stable matrix 1if

L b1c1+b2c2
Y a
1
4 b1c1+b2c2
- and A 1is not stable if N B serme Next if a, } a  and
8 31 2

min(al,az) < 0 , we have

Hy < -max(al,az) < Ky < -min(al,az) < Wy o

Now A 1is a stable matrix if

b.c b.c ‘
a0>——---]'1-|v-———22 t
i s

and A 1is not stable if ~
|
b.c b.c | 4
aos__].'_l+_2__2. - | :

i |

Note that multiple eigenvalues cannot occur when p =1 .

Example 2. Consider next the case p = 2 (again assuming a =0 ).

I
: ‘ ; We have &
a9 R pl-g i o
1 A a, bl t:2 b3 @
; ¢y -8y 0 0
f v <, 0 a, 0 i
-c 0 0 -a
d 3 3_1 ’

so that




3 12
' . + + 2 1
| det(AI-A) = (A 80)(}\ 81)()\ +az)(k+a3) blcl()\ +a2)(k+a3)
| = + >
| byc, (A al)(x+a3) b3c3(k+a1)()\+a2) .
There are now essentially three cases.
Case 1. a, =a, “a, ™ a8, > 0 . Then §
b.c,+b.c_+b_c
% o T e Tk N e - !
det(\I-A) = () +a1) [x +a° }‘+51 ]
i
and the eigenvalues of A satisfy
p,z < -al < u.l ?
with -51 occurring twice as an eigenvalue. A is stable if ;
3
b1c1+b2c2+b3c3 g
ao > = ’ @
a; 4
and nonstable if ;
b1c1+b2c2+b3c3 g
a. S
g a
1
Case 2. Two of the numbers a,, 8,, 8, are equal and the third different, (
;_ | J say, &, =a, = ;2,32 - il . Now
; b.c, +b. ¢ b,c
;. e 3 i = 2 e T e - B x
E det(A\I-A) = (A+& (A +&,)) (A +a, "t e, h+a, &
= 3
E |
I )% and the eigenvalues of A satisfy S
: w by < -8, < by < &) <y : 4
81 ?
.T—n\l‘-? > i ,
3& with -a, a simple eigenvalue. This time A is stable if and only if
Yl 138
el 6
£ | Ao b.c, +b C,' b.c f'»
i 4 | .2 .1 N
F |
| t
A 3
b R T R R B T T T e e 3




ﬁy % Case 3. The numbers a;, a,, a, are distinct with, say, a, < a, < ., .

hence
b.c b.c b.c
- . b NI 5 AR
det(AI-4) = (A+8))(h+a))(h+ay)[h +a, A+a, A+a, >\+a3]

so the eigenvalues of A satisfy

; < <
u4<a3 Hq 81<u2<32<u1.

? b.c b.c b.c

! Now A 1is stable if and only if a_ > 11 + 22 + 33 _
| LA o "y

{ Let us turn next to the eigenvectors of A . We must consider the
equation (AI -Afﬁ =0 where u = (ul,---,un)T and ) 1is an eigenvector

of A . This system is

1
()\+a0)u + % b (14)

u ’
1jj+1

E cju1 + ()‘+aj)uj+1 =0 . (15)

Suppose first that \ = By 1< j<sk+ 1, then ) + e, F£ 0 for

1< j<p+1, and from (15) we obtain

ZSsisp+2 .

b4

Choosing Yy = 1 , we obtain the eigenvectors
| =4
| 3
c c c
j oy (lt' +18 | il _33 | petluny s°_P:: )T ’ (16)
u-j 1 ”'j 2 H'j P“"l

1<jsk+1. Now ci >0, 1<1is<p+ 1, hence the signs of the §

e
—_ s IR RN Va2 L

SRR Y

R

8~

elements of the eigenvectors depend only upon the denominators of the

components, For Jj = 1 we have oy + a, >0 for 1sisp+l,

g

2

o

hence every component is negative except for the first component. Thus

.
Eee)

31 has the sign pattern (+,-,-,°**,-) . On the other hand for

**
R

5
2
4




}=k+ 1 we have bpey T 83 <0 for 1<isp+ 1, sothat '6k+1

has the sign pattern (+,+,+,<++,+) . Finally, consider ﬁj A
1< j<k+1. We have “j + a, < 0 for m, o siee mj_1 values of

a, and p,+a, >0 for m,Z + - + ™ values of a, 1St Sp 41 .,

i j i J

Thus each component of U, for which a, has one of the values

j i

will be positive and each component for which a, has one

61'...’aj-1

of the values ;j’

Next suppose A = -51 for some 1 <1 <k . Then mi equations

*++,a_ will be negative.

k

Ddar S s s ) SOV 4 0 WX

of the system (15) reduce to the form cu; = 0 , hence u1 e
equations from this subsystem thus reduce to

The remaining p + 1 - m,

-- = . -8 + -
( ai-raj)uj+1 0. Since (-a, aj) # 0 , it follows that the corres

ponding u, = 0 . Finally the m, caomponents which need not be zero 5

b i 3
must satisfy (14) , which becomes ]
pt+l
bu,. =0 (14a)
;22 j j+1

because u1 = 0 . There are m1 nonzero terms on the lefthand side

of (l4a) , and we can clearly obtain m, - 1 1linearly independent

i

solutions, hence m, - 1 linearly independent eigenvectors. 1In fact,

i
it is easy to see each of these eigenvectors can be chosen so as to
i
have exactly two nonzero components, one positive and one negative. L
i

In order to see exactly how the eigenvectors appear in the various

possible cases let us find them in the special case p = 2.

Example 2 (continuation). Consider first the eigenvectors for case 1,

a, L a, - 03 -~ a, > 0 . Corresponding to My and H, we have the

eigenvectors




e TR
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while corresponding to the double eigenvalue -El we have the eigenvectors

u3 - (oﬂbzl-blto) ’

u, = (0,b3,0,-b1) «

Turning next to the case 2, we have the eigenvectors Ups Uy, U4

given by

c
= 4 1 = 2 i S ot
Ui (1, \"'i+52’ p'i+al’ ui+§2) o 1'2’3

and the eigenvector

U, = (0,b3,0,-b1) .

Finally, in case 3 all eigenvectors u1,°--,u4 have the form

Cc c c
2 AR 3
(1)- +a s 7

. A TP OT
i oy Ty "ol Ry g

u

We wish to point out that one of the consequences of our analysis
to this point is that multiple eigenvalues can occur only in the event
that there are two or more supply columns. This means that the matrix

A must be at least of order 4.

It is of considerable interest to understand how the eigenvalues
of A vary when the elements of A vary. To this end consider first
the element ag - It is clear from figure 1 that increasing a, will
decrease each of the eigenvalues “j , 1< j<k+ 1. Thus we can

assert that

s i 1S58k *L ., 17)

On the other hand, it is also clear that the eigenvalues -il s 1818k

do not depend upon a5 i.e.,

P L R AR o Lo
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| d(-a )
| = .
! } 3a DL Tsd gk -, (18)
v ] 0
Thus we have complete information regarding the dependence of the eigen-
; 1 values upon the element a8, -
b

3. Construction of Solutions

Now it is well known (see [6], [7]) that the solution of the homo-

geneous system (la) can be written in the form

z(t) = etAz(O) (19)

= asn T 5
where z(0) (xo,yo.slo, ,spo) is the vector of initial values at
time ¢t =0 . The matrix exp(tA) 1is called a fundamental matrix of
the system. Let us determine the form of this matrix.

To this end let U be the matrix whose column vectors are the

eigenvectors of A . Then
AU = UJ

where J 1s the Jordan matrix of A . Since A is similar to a

symmetric matrix, J {is a diagonal matrix with diagonal elements the
eigenvalues pl,"',uj , and -;1,"‘,-ik , the latter occurring with
appropriate multiplicities. Thus, denoting the eigenvalues of A by

kl,"’,xn , we have

J= dilg[kl."'.ln] .




17
et = diag[eklt,"’ eknt]
More explicitly, then
etA = U diag[eu'lt,"',eu"d.lt,e-‘;lt,'",e-glkt]U-1
It follows, therefore, that (19) appears in the form
z(t) = U diag[eult,"',e-akt]U-lz(O) . (19%)

Let us examine this formula more closely. First consider the

ult -lkt
matrix U diagle A TvE ] . Denote this matrix by U(t) . Multi-

plication of any matrix on the right by a diagonal matrix multiplies the
columns of the matrix by the corresponding diagonal elements. Thus the

first k + 1 column vectors of U(t) are just the vectors

“'jt P'jt
U.(L) = (e“jt _cle oi'e __c.ﬁ]i__.)'l' (20)
j TR N X g T v
3 r Ly

1< j<k+ 1. The remaining columns of U have the form

-a,t -a.t

T = (wqe t el e ) (21)

where exactly two of the numbers ukj s, 1S jsp+2 are different

from zero and each a, is one of the numbers 51,"',3

1 |
Next we observe that U-lz(O) is a vector. Let us denote it by

w . Then the formula (19) can be rewritten as
z(t) = U(t)w . (22)
Let us turn next to the solution of the nonhomogeneous system

z = Az + F(t) (23)

where f(t) = (f(‘)'s(t)-fl(t).'--,rp(t)) . As mentioned above we may
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think of the vector F as representing reinforcements. In the case of
the x and y forces this might be additional personnel, while for the
supply columns it might consist of vehicles or other equipment replace-

ments. The general formula for solving the system (23) 1is

e(t-s)A

z(t) = etAz(O) +-j;t F(s)ds . (24)

In view of the form which we have presented above for the fundamental
matrix of the system, we can rewrite (24) as
= -1
z(t) = U(t)w + [ U(t-s)U "F(s)ds . (25)
0
It is evident from the formulas (22) and (25) that we must

investigate the form of the matrix U-1 . We shall not attempt to do

this for the most general case.

Upper and Lower Solutions

As was pointed out in section 1 the system (8) 1is of particular
importance because its solutions for appropriate values of a can be
used to obtain both upper and lower bounds for all positive solutions
of the system (1) . In this section we shall explicitly solve the
system (8) .

Thus consider the matrix

Ao = Fho -bl R Ty

-c | T

1

-c 0 .o =&

p+l J

-

The characteristic polynomial of AO is

OFPNEIL SFe Sy




T — — ’
3 19
3 w "
% | det(I-A0) = (A +a)P[a* + (ag + &)k +aa - 67)
4 where § = ; bjcj . Therefore the eigenvalues of Ao are §
& =] i
! A=-a, p- times , :
a . +a
& 0 X 2 2.1/2 ,
! Bl e +2[(ao a) +467] , :
and :‘x’t
a_+ta {
3 0 1 2 2.1/2 B
| S et | e e B '
Let us set
s -
4 € "l»ﬂa -2yt +48? §
: 2 0 .
:
: -ao+a -y
¥ 2
| so that the eigenvalues of Ao become
A= -a, p-times ,
N®o+t € (26)
)\ bt o NI R
E
l
Now the fundamental matrix corresponding to Ao is &
| v=l 1 1 Sy (27)
’ | 2 Cl ¥ Cl bz e p+1
Peul o¥tta o=-tta b . , ey E
: __Sph1 o W i 8
ot+e+a o-c+a 1
— - 3
It is easy to show that det U = (-I)PZb‘l’-le and one obtains (
l
| b
{ L
v
A

P
"‘:A?'I", ;‘?.:',' g v
A Lad Tk - IR T e




r
A
2¢(c - € +a)

62

2e(c+e+a)

where we have defined

ptl
5=7 b.c 2<s jsp+1.
4 f-Jl.ifjii

Next let us define

ptl
Do - blyo + z: bjsj—l,O
j=2
and compute the components of the vector w. After some calculations

one finds

2
6
g-cta %o Dol

62
B +
gteta *o0 I)ol ’

'bil[-a JEREPTL -

-2
k-2,0" 1% Dl -

YK
With the vector w at hand we can write out the solution to

the homogeneous version of the system (8). It is

TR, D, RN e TR
s A »\u' 3t :v‘ '.1,.»' s
il o g



s L e b

Bhachis s o (¢ a0

S by N N -

e auli

g
‘&\;\“
B .
o
d

f
- OF 1 1 ,
x(t) = e (xo cosh gt + E[(U-Fa)xo-Dolsinh st} . |
pal c (o +a)D c.D |
y(t) = (yo --—lig)e e 7}[x0+~——-—§——9]e°t sinh et + -ligect cosh €t, Y (2g) f
8 6 Lo}

& D e (o+a)D ‘§
s _Sk+170, cat il 0, ot i

sk(t) (sk’o ———7——)e = [x0 + 5 le” "sinh et

6 6
c D
+ k+; 0 ectcosh gt sk S p ., )
)

Now observe that the stable case occurs if and only if

2
- 0.
aao § > (29)

But we also note that in any event a 2 0, 0 < 0, and ¢ > 0 . Conse-
quently the analytic form of the solution (28) 1is the same whether or
not Ao is stable. This is attributable to the fact that only the sign
of the eigenvalue )\ =g + ¢ 1is affected by the change from the stable
to the unstable case. However, we also wish to call special attention

to the situation occurring when a = 0 . Then the solution will always

be unstable because (29) reduces to -62 > 0 which can never be
satisfied.

Let us next write out the solution to the nonhomogeneous problem.

To this end it is sufficient to write out the integral terms appearing

in (28) yield the entire solutim.

13
f
in equation (25) because these terms added to the corresponding terms ‘
|
~ r 1 i

Set w=0U F(s) . Then we have !

l

- QRN S 0\ - Dy (5))

-—1-[
2 2¢e0teta

1

f(a)+Do(s)1 > ,




T

e
- B t
= Sl £

P it St

il

SRR

<

> 4

Py S

-

R PRSTUARS

;(t) = &:(g(s) -E% Do(s))e-a(t-s)ds

S S et i < OB L .

22
= -1 -2
b T, QLS T L, WL
where
: ptl
Dy(s) = b g(s) + ;ijr-’_l(s) ; (30)

Now let (;(c),;(t),gl(t),"',:;(t)) denote the solution of the
nonhomogeneous system satisfying zero initial conditions. We then obtain

D.(s)

o-+a f(s) - OE lsinh e(t - s)}ds ,

x(t) - f ec(t s)[f(s)cosh e(t-8) + [

c ¢,
+ fot[E% Do(8)e” (" eosh e (e~ s) -—H£(s) + IS0 (8)1e (£72)
X sinh e(t - s)}ds , 5 (31)
< t ¢ gl
(0 = () - 00367 D4 [ (K 06 Deomn e o)
0 8 0 6
k+1 a o(s e-o‘(t:-s)si‘_lh SOk~ it
ilsksp. ]

Again because a2 0,0 < 0, and € > 0 this portion of the
solution has the same form in both the stable and the nonstable case.

The formulas (28) and (31) provide the basic tools for any
additional analytic analysis of the system (8). On the other hand, as
was pointed out in the introduction, the solutions we have obtained
provide upper and lower bounds for all solutions of the system (1).
These bounds will hold as long as the bounding solutions remain positive
and do not violate the stopping rules. Since the bounding solutions
have the same initial values as the solutions we wish to bound, either

the upper bound or the lower bound may be expected to remain in force

T

e T ——

e
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g‘ ; until the solution violates one c¢ che stopping rules. In view of the

fact that both bounding solutions have the same mathematical form we

expect that they will furnish reasonably close estimates of the actual

solution. This 1is, of course, only a conjecture. We expect to examine
gb : more closely the behavior of the solutions of our model in a subsequent

paper.

In view of the fact that our aim in this paper was to initiate
the study of models whose dependence upon the model parameters is
primarily qualitative it is gratifying to observe that the upper and

lower solutions both have the same structure independently of the magni-

tudes of the elements of A as long as all of the numbers ai y 9 S 3 <p
= bi 6 S5 4 1<is<p+ 1, are positive. This is about the
strongest qualitative result we could hope to obtain. Moreover, the ’

form of the solution in the case where ai 2 0 0 0= s pt 1 s

also easily deduced from the above results.
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